The Physics of Pulsar Magnetospheres June 6th 2016 - NASA GSFC

Developing of a specialized Particle-In-Cell code to study Pulsar Magnetospheres

> Gabriele Brambilla NASA GSFC, Università degli Studi di Milano

I'm a grad student and I work with:

Alice Harding
Andrey Timokhin
Constantinos Kalapotharakos
Demosthenes Kazanas

In PIC codes, particles moved by the fields form the currents that act on the fields themselves

Birdsall & Langdon 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)

3D Cartesian

Electromagnetic
Relativistic pusher
Parallelized

PML perfectly matched layer

Domain size physical 3.0 R_{LC} with PML 3.6 R_{LC}

Resolution (max)
720³ cells
1.5 10⁹ particles

All the simulation run on Discover - NASA NCCS

Most of the plots and videos are done with Vislt (produced by LLNL)

We tested our code with typical plasma problems, like the two stream instability

We tested our code with typical plasma problems, like the two stream instability

We reached a configuration similar to the force free gradually changing the injection parameters

In the force free solution the parallel electric field is screened except for the current sheet

The currents flow on the current sheet and from the polar cap

It is necessary to keep the magnetization high to resemble the real pulsar behavior

In PIC simulations the multiplicity is lower than in a real pulsar

We can look at the different contribution of electrons and positrons to the current

Positrons

Electrons

... And we can see where electrons mostly contribute to the current and where positrons do

We can also look at the direction of the flows

There are zones in which the flows counter stream and others in which they flow in the same direction

Looking at the energy of the particles we see the most energetic flow in the branches of the current sheet

The knowledge of the particle energy distribution is limited by the noise and the magnetic field

In the whole 3D structure the most energetic particles flow out on the current sheet

corotating frame

inertial frame

